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Abstract

Rationale: There are at least four key pathophysiological
endotypes that contribute to obstructive sleep apnea (OSA)
pathophysiology. These include 1) upper-airway collapsibility
(Pcrit); 2) arousal threshold; 3) loop gain; and 4) pharyngeal muscle
responsiveness. However, an easily interpretable model to examine
the different ways and the extent to which these OSA endotypes
contribute to conventional polysomnography-defined OSA severity
(i.e., the apnea–hypopnea index) has not been investigated. In
addition, clinically deployable approaches to estimate OSA
endotypes to advance knowledge on OSA pathogenesis and targeted
therapy at scale are not currently available.

Objectives: Develop an interpretable data-driven model to 1)
determine the different ways and the extent to which the four key
OSA endotypes contribute to polysomnography-defined OSA
severity and 2) gain insight into how standard polysomnographic
and clinical variables contribute to OSA endotypes and whether they
can be used to predict OSA endotypes.

Methods: Age, body mass index, and eight polysomnography
parameters from a standard diagnostic study were collected. OSA
endotypes were also quantified in 52 participants (43 participants
with OSA and nine control subjects) using gold-standard
physiologic methodology on a separate night. Unsupervised

multivariate principal component analyses and data-driven
supervised machine learning (decision tree learner) were
used to develop a predictive algorithm to address the study
objectives.

Results:Maximum predictive performance accuracy of the trained
model to identify standard polysomnography-defined OSA severity
levels (no OSA, mild to moderate, or severe) using the using the four
OSA endotypes was approximately twice that of chance. Similarly,
performance accuracy to predict OSA endotype categories (“good,”
“moderate,” or “bad”) from standard polysomnographic and clinical
variables was approximately twice that of chance for Pcrit and
slightly lower for arousal threshold.

Conclusions: This novel approach provides new insights
into the different ways in which OSA endotypes can contribute
to polysomnography-defined OSA severity. Although further
validation work is required, these findings also highlight the
potential for routine sleep study and clinical data to estimate at least
two of the key OSA endotypes using data-driven predictive analysis
methodology as part of a clinical decision support system to inform
scalable research studies to advance OSA pathophysiology and
targeted therapy for OSA.
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Obstructive sleep apnea (OSA) is a common
breathing disorder characterized by
repetitive pharyngeal collapse during sleep
(1). Untreated OSA is associated with many
adverse health outcomes, including
cardiovascular (2), metabolic (3), and
neurocognitive consequences (4).
Continuous positive airway pressure
(CPAP), which acts as a pneumatic splint for
the pharyngeal airway, is highly efficacious
in resolving respiratory events in OSA.
However, tolerance and adherence remain
major limitations for CPAP therapy for
many patients, with failure rates of 50% or
more (5–7). Second-line therapies, such
as oral appliances, tend to have higher
adherence than CPAP (8). However,
treatment efficacy varies and is currently
very difficult to predict (9).

Anatomical and nonanatomical
factors contribute to OSA pathogenesis
(10, 11). Nonanatomical factors or
“pathophysiological endotypes” (or
“phenotypes,” as they have previously been
called) (10, 11), such as a low respiratory
arousal threshold, oversensitive respiratory
control system (high loop gain), and
impaired upper-airway dilator muscle
responsiveness during sleep are present in
most people with OSA (11). In addition,
some degree of anatomical impairment
(i.e., narrow, crowded, collapsible airway) is
a key feature of OSA for all patients (12–14).
These four endotypes have been proposed
to be important contributors to OSA
pathogenesis and have provided new
opportunities for targeted therapy (10, 11).
However, the extent to which they
contribute to standard polysomnography
(PSG)-defined OSA severity categories
(i.e., mild, moderate, and severe defined via
the apnea–hypopnea index [AHI]) has not
been systematically investigated.

Novel approaches to manipulate
specific OSA endotypes to reduce OSA
severity have been performed in small
physiology studies (15–21). These studies
provide proof-of-concept support for a
targeted endotype-based model to treat OSA
(22–26). However, the detailed physiological
methodology used to accurately quantity
OSA endotypes is invasive, time-consuming,
and impractical for routine clinical care.
Accordingly, a major objective to advance
targeted therapy for OSA is to develop
simplified techniques to accurately estimate
the key endotypic traits. There has been
recent progress toward achieving this goal.
Indeed, simple approaches to estimate

airway collapsibility using standard
polysomnography and CPAP titration data
(27–29) have been developed. Wakefulness
tests have also been developed to estimate
upper-airway collapsibility (Pcrit) during
sleep (30, 31). In complementary work, tools
to simply quantify the nonanatomical traits
that contribute to OSA, such as loop
gain (32–34), the respiratory arousal
threshold (35, 36), and pharyngeal muscle
effectiveness (29), have also been developed.
However, many of these approaches
estimate OSA endotypes by constraining the
data to fit a specific model (i.e., a gain, delay,
and single time-constant model) that may or
may not represent the underlying dynamics
in some patients. In addition, these
approaches are yet to be translated to
routine clinical care. Thus, there remains an
important need to test additional tools to
estimate OSA endotypes to inform targeted
therapy that can be readily integrated into
clinical care.

Accordingly, this study aimed to
develop an interpretable data-driven
model to determine 1) the different
ways and extent to which the four OSA
pathophysiological endotypes contribute
to polysomnographic measures of OSA
severity; and 2) gain insight into how
standard polysomnographic and clinical
variables contribute to OSA endotypes and
whether standard polysomnographic and
clinical variables can be used to predict key
OSA endotypes.

Methods

Endotype data for the current study were
acquired during a larger study to quantify
the key pathophysiological traits causing
OSA (11). The methodological details below
focus on elements pivotal for the current
novel investigations and only briefly outline
the general experimental methodology
described previously (10, 11). Data were
collected in Boston and analyzed in
Australia (Commonwealth Scientific and
Industrial Research Organisation and
Neuroscience Research Australia).

Participants
Complete data were acquired from 52
otherwise healthy individuals who were not
receiving any medications known to affect
sleep or breathing. Forty-three participants
had OSA (total AHI .10 events/h sleep),
and nine did not (total AHI ,10 events/h

sleep). Participants with OSA had been
compliant (.4 h/night) with CPAP therapy
assessed via machine download for at least 3
months before enrollment. Twenty-three
participants from the original cohort of 75
who completed all the study procedures (11)
were excluded, as they did not meet the
criteria for one or more of the current
analyses (i.e., incomplete data for one or
more of the study parameters; see DATA

ANALYSIS for further detail). All participants
provided informed written consent. The
protocol was approved by the Partners
HealthCare Institutional Review Board.

Key Measurements

Protocol. Initially, a standard baseline
in-laboratory PSG off CPAP was performed
in all participants to quantify key PSG-
measured variables of OSA severity. CPAP
was withheld only during the night of the
baseline PSG. Sleep studies were staged
and respiratory events were scored by an
experienced sleep technician blinded to the
study objectives using standard criteria (37).
Hypopneas were scored when there was
either a .50% airflow reduction or a lesser
airflow reduction–associated with a .3%
oxygen desaturation or a cortical arousal
(37). On a separate night, participants
completed a detailed overnight physiology
study. Electroencephalograms (C3-A2/
O2-A1), electroculograms, and chin
electromyogram were acquired for sleep
stage and arousal scoring. Genioglossus
electromyogram was measured using fine-
wire intramuscular electrodes (Cooner Wire
Co.) (11, 38). Epiglottic pressure was
acquired using a transducer-tipped pressure
catheter (Millar Instruments) (11). A
nasal CPAP mask was fitted, and pressure/
airflow was measured with pressure
transducers (Validyne Corporation) and
pneumotachograph (Hans Rudolf Inc) (11).

Participants were studied supine on
CPAP at a level to eliminate inspiratory flow
limitation. Transient reductions in CPAP
of varying magnitude were applied for
<3 minutes during stable non–rapid eye
movement (NREM) sleep to cause varying
degrees of upper-airway collapse to quantify
the four OSA endotypes, as described in
detail elsewhere (10, 11, 39).

Data and statistical analyses
approaches. Outcomes were categorized to
facilitate predictive quantitative analyses.
Accordingly, to address how and whether
OSA endotypes contribute to PSG-defined
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OSA severity, OSA severity categories were
defined a priori as follows: 1) no OSA (AHI
,10 events/h sleep), mild to moderately
severe OSA (AHI between 10 events/h sleep
and 30 events/h sleep) and severe OSA (AHI
.30 events/h sleep) for each AHI parameter
examined (total AHI, NREM AHI, and rapid
eye movement [REM] AHI). Similarly, to
develop predictive analysis methodology
to gain insight into the different ways
polysomnographic and clinical variables can
contribute to OSA endotypes and whether
they can be used for prediction purposes, each
OSA endotype was categorized as “good,”
“moderate,” or “bad” according to previously
defined physiological cutoffs (10, 11)
(Table 1). Age, body mass index (BMI), and
the eight standard polysomnography
measures from the manually scored PSG
(including total AHI, supine AHI, nadir
arterial oxygen saturation, NREMAHI, supine
NREMAHI, REMAHI, arousal index, and the
fraction of hypopneas vs. apneas) were used
for predication outcome analyses. These
variables were selected because they have, in
isolation, been shown to be related to one or
more of the OSA endotypes in previous
studies (40–51). To be included in the
analyses, participants from the parent study
(11) had to have complete data for all four
endotypic traits from the physiology night plus
measures for age, BMI, and the eight standard
PSG variables mentioned above.

A detailed description of the
methodological background and the
data and statistical analysis approaches
performed in this study is outlined in the
online supplement. Briefly, developing an
easily interpretable predictive algorithm
with the potential to learn OSA severity
categories from OSA endotype data and
the use of clinical data and standard
PSG variables to predict OSA endotypes

requires an ensemble of novel algorithms.
Accordingly, unsupervised data analysis
techniques coupled with supervised
predictive modeling were chosen as a state-
of-the-art methodology to support clinical
evaluation and satisfy the decision-making
objectives of this study.

Specifically, we used unsupervised
multivariate principal component analyses
(PCAs) and data-driven supervised machine
learning using a decision tree learner (DTL).
Unlike other machine learning techniques,
which resemble a “black box” approach in
which the underlying computational
decisions are unknown to the user, the
current approach has the advantage of a
visualization output of the clinical decision
tree that can be reviewed by the user. This
provides novel insight into the different ways
by which OSA endotypes can contribute
to OSA severity and how standard
polysomnographic and clinical data can
contribute to OSA endotypes in the current
cohort. Each treatment decision tree was
trained and then tested using a leave-one-out
cross-validation approach. This was repeated
52 times to assess the accuracy of the model
for each outcome measure and was reported
as accuracy versus DTL complexity plotted
across the complexity parameter a. The a
value determines the complexity of the tree
by controlling the number of leaf nodes, with
a= 0 corresponding to themost complex tree
and higher a values reducing the tree
complexity and, hence, the tendency to
overfit to the training data. Maximal
performance accuracy during testing of the
trained and optimized (balanced for accuracy
and complexity) DTLs are reported in the
text. Preprocessing and analyses were
conducted in house with customized software
developed at Commonwealth Scientific and
Industrial Research Organisation, Australia.

Sensitivity analyses were also conducted
using multinomial logistic regression to
model OSA severity categories and obtain
accuracy estimates.

Results

Anthropometric sleep characteristics and
objective CPAP compliance of the 52
study participants with complete data are
summarized in Table 2. On average, study
participants had 396 25 minutes of REM
sleep and spent 3026 74 minutes supine
during their diagnostic study. Reasons
for data loss/exclusion for 23 of the 75
participants from the original cohort include
inability to quantify one (n= 20) or two
(n= 2) of the four traits. Another participant
did not have any supine sleep on their
baseline diagnostic study. Age, BMI, and
total AHI characteristics for the 52
participants with complete data who were
included in the current study were not
different from the 23 participants with
incomplete data from the larger cohort who
were not included (Table E1).

PCA using the four OSA endotypes,
clinical variables, and eight PSG variables
showed linear separability with the first two
components (Figures E1 and E2). Having
confirmed linear separability (requirement
to proceed with the subsequent analysis
techniques/steps), we developed an
algorithm to address the study objectives.

Detailed Physiological Measurements
of the Four Key Endotypes to Classify
OSA Severity Categories
The four OSA endotypes were used to train
a supervised DTL model to gain insight into
the different ways by which OSA endotypes
can contribute to OSA severity and

Table 1. Three-class physiological threshold definitions for each OSA endotype

Class
Definition

Pcrit
(cm H2O)

Loop Gain
(Dimensionless)

Arousal Threshold
(cm H2O)

Muscle Responsiveness
(%Max EMG/2cm H2O)

Good ,22 .23 ,220 ,20.5
Moderate 22 to 12 23 to 25 215 to 220 20.1 to 20.5
Bad .2 ,25 .215 .20.1

Definition of abbreviations: OSA=obstructive sleep apnea; Pcrit = upper-airway collapsibility; %Max EMG/2cm H2O=genioglossus electromyography
(EMG) as a percentage of maximal (Max) activation during wakefulness per cm H2O of negative epiglottic pressure during sleep.
Definitions were defined according to previously established cutoffs (11). Good Pcrit =minimally collapsible upper airway, whereas bad Pcrit = highly
collapsible upper airway. Good loop gain = low loop gain, whereas bad loop gain = high loop gain. Good arousal threshold= high arousal threshold (harder to
wake up), whereas bad arousal threshold= low arousal threshold (easy to wake up). Good muscle responsiveness = excellent genioglossus muscle
activation to small changes in negative pharyngeal pressure, whereas bad muscle responsiveness =poor genioglossus muscle responsiveness. In each
case, moderate = intermediate values.
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determine whether they could be used to
predict OSA severity category (no OSA,
mild to moderately severe, or severe).
Maximal performance accuracy of the
optimized trained decision trees to predict
the three OSA categories for each of the
AHI definitions was approximately twice
that of chance (total AHI = 56%, NREM
AHI = 65%, and REM AHI = 64%). Full
accuracy versus complexity plots and
corresponding DTLs at or near maximal
predictive accuracy are displayed in the
online supplement (Figures E3 and E4).
Figure 1 displays the output of the fully
trained DTL (effective a= 0) for the total
AHI. The entire learning process within the
decision tree predictor has been visualized to
provide insight into the different ways by
which OSA endotypes can contribute to
OSA severity and face validity of the various
pathways to correct prediction for the
current cohort.

Multinomial logistic regression
analyses also showed that the four key OSA
endotypes could be used to estimate OSA
severity category (Tables E2–E4). Accuracy
performance characteristics for these
analyses are displayed in Table E5.

Development of an Interpretable
Model to Gain Insight into the Different
Ways Standard Clinical and
Polysomnographic Parameters Can
Contribute to OSA Endotypes and
Potential for These Variables to be
Used to Predict OSA Endotypes
Age, BMI, and the eight selected PSG
parameters were used to train a supervised
DTL model to predict each OSA endotype.

Maximal performance accuracy of the
optimized trained decision trees to predict
the three OSA endotype categories (good,
moderate, and bad) was approximately
twice that of chance for Pcrit (65%) and
slightly lower for arousal threshold (56%).
Conversely, maximum performance
accuracy for loop gain and muscle
responsiveness were similar to chance (40%
and 41% respectively). Full accuracy versus
complexity plots and corresponding DTLs
at or near maximal predictive accuracy for
Pcrit and arousal threshold are displayed
in the online supplement (Figures E5 and
E6). Figures 2A–2D display the complete
outputs of the fully trained DTL (effective
a= 0) for Pcrit, arousal threshold, muscle
responsiveness, and loop gain to provide
insight into the different ways by which
standard polysomnographic and clinical
variables can contribute to OSA endotypes
for the current cohort.

Discussion

The findings from this study provide
support for the importance of OSA
endotypes as key contributors to PSG-
defined OSA severity. In addition, the study
findings highlight the potential for routine
clinical and PSG data to be used to estimate
at least two of the key OSA endotypes using
data-driven predictive analysis. Although
further validation in larger prospective
cohorts is required, the novel analytical
approaches described in the current study
have the potential to be incorporated as part

of a clinical decision support system to
inform targeted therapy for OSA.

Contribution of Endotypes to
OSA Severity
Although this is the first study to use PCA
and data-driven DTL approaches to
investigate the contribution of all four OSA
endotypes to OSA severity categories,
several studies have explored potential
relationships between individual OSA
endotypes and OSA severity. For example,
Pcrit correlates with OSA severity as
measured via the AHI or respiratory
disturbance index (40–42). However, the
proportion of variance in AHI that Pcrit
alone explains is quite low (r values range
from 0.23 to 0.59) (40–42). Higher arousal
threshold values correlate with increasing
AHI and explain a substantial proportion of
total AHI variance (r values range from 0.61
to 0.69) (35, 44). This may be, at least in part,
due to greater sleep debt with increasing
OSA severity (52). Earlier studies showed
that higher loop gain values were associated
with increased OSA severity as measured via
the AHI (53). However, subsequent studies
have shown that the influence of high loop
gain on the AHI is dependent on Pcrit (11,
54). Few studies have explored potential
relationships with pharyngeal muscle
responsiveness and AHI. We did not find
any independent relationship between
muscle responsiveness and AHI in our
original OSA endotyping/phenotyping
cohort (50). Thus, previous studies have
shown either no relationship or weak to
moderate associations between individual
OSA endotypes and OSA severity (50).

Table 2. Anthropometric and sleep parameters

All Participants
(n= 52)

Participants with OSA
(n= 43)

Control Subjects
(n=9)

Sex, M/F 33/19 30/13 3/6
Age, yr 45611 47610 39613
BMI, kg/m2 3467 3566 2764
Total AHI, events/h 36630 43629 463
Supine proportion, %TST 89 (75, 93) 88 (73, 91) 95 (92, 98)
Supine AHI, events/h 37631 44629 463
Nadir SaO2

, % 8367 8267 8963
NREM AHI, events/h 35632 42631 364
Supine NREM AHI, events/h 37633 44632 364
REM AHI, events/h sleep 37625 42624 13610
Arousal index, arousals/h sleep 37627 42627 1466
Fraction of hypopneas:apneas 86617 85619 9069
CPAP compliance, h/night — 6.361.4 —

Definition of abbreviations: AHI = apnea–hypopnea index; BMI =body mass index; CPAP=continuous positive airway pressure; F = female; M=male;
NREM=non-REM; OSA=obstructive sleep apnea; REM= rapid eyemovement; SaO2

= estimated overnight blood oxygen saturation; TST= total sleep time.
Data are mean6SD or median (25th centile, 75th centile).
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Pcrit ≤ –5.179
gini = 0.635

samples = 52
value = [11, 24, 17]
class = severe OSA

gini = 0.0
samples = 5

value = [5, 0, 0]
class = No OSA

True

Pcrit ≤ 2.162
gini = 0.592

samples = 47
value = [6, 24, 17]

class = severe OSA

False

Arousal Threshold ≤ –23.12
gini = 0.618

samples = 39
value = [6, 16, 17]

class = Mild-moderately severe OSA

gini = 0.0
samples = 8

value = [0, 8, 0]
class = severe OSA

Pcrit ≤ 1.454
gini = 0.32

samples = 10
value = [0, 8, 2]

class = severe OSA

Loop gain ≤ –5.124
gini = 0.614

samples = 29
value = [6, 8, 15]

class = Mild-moderately severe OSA

Muscle Responsiveness ≤ –0.235
gini = 0.198
samples = 9

value = [0, 8, 1]
class = severe OSA

gini = 0.0
samples = 1

value = [0, 0, 1]
class = Mild-moderately severe OSA

gini = 0.0
samples = 5

value = [0, 5, 0]
class = severe OSA

Muscle Responsiveness ≤ –0.188
gini = 0.375
samples = 4

value = [0, 3, 1]
class = severe OSA

gini = 0.0
samples = 1

value = [0, 0, 1]
class = Mild-moderately severe OSA

gini = 0.0
samples = 3

value = [0, 3, 0]
class = severe OSA

Muscle Responsiveness ≤ –0.047
gini = 0.397

samples = 11
value = [0, 3, 8]

class = Mild-moderately severe OSA

Arousal Threshold ≤ –19.579
gini = 0.66

samples = 18
value = [6, 5, 7]

class = Mild-moderately severe OSA

Arousal Threshold ≤ –11.127
gini = 0.198
samples = 9

value = [0, 1, 8]
class = Mild-moderately severe OSA

gini = 0.0
samples = 2

value = [0, 2, 0]
class = severe OSA

gini = 0.0
samples = 7

value = [0, 0, 7]
class = Mild-moderately severe OSA

Loop gain ≤ –6.511
gini = 0.5

samples = 2
value = [0, 1, 1]

class = severe OSA

gini = 0.0
samples = 1

value = [0, 1, 0]
class = severe OSA

gini = 0.0
samples = 1

value = [0, 0, 1]
class = Mild-moderately severe OSA

gini = 0.0
samples = 3

value = [3, 0, 0]
class = No OSA

Arousal Threshold ≤ –9.253
gini = 0.631

samples = 15
value = [3, 5, 7]

class = Mild-moderately severe OSA

Arousal Threshold ≤ –14.563
gini = 0.5

samples = 10
value = [0, 5, 5]

class = severe OSA

Loop gain ≤ –3.49
gini = 0.48

samples = 5
value = [3, 0, 2]
class = No OSA

Pcrit ≤ –4.424
gini = 0.469
samples = 8

value = [0, 3, 5]
class = Mild-moderately severe OSA

gini = 0.0
samples = 2

value = [0, 2, 0]
class = severe OSA

gini = 0.0
samples = 1

value = [0, 1, 0]
class = severe OSA

Muscle Responsiveness ≤ –0.994
gini = 0.408
samples = 7

value = [0, 2, 5]
class = Mild-moderately severe OSA

gini = 0.0
samples = 1

value = [0, 1, 0]
class = severe OSA

Muscle Responsiveness ≤ –0.122
gini = 0.278
samples = 6

value = [0, 1, 5]
class = Mild-moderately severe OSA

gini = 0.0
samples = 4

value = [0, 0, 4]
class = Mild-moderately severe OSA

Loop gain ≤ –3.569
gini = 0.5

samples = 2
value = [0, 1, 1]

class = severe OSA

gini = 0.0
samples = 1

value = [0, 0, 1]
class = Mild-moderately severe OSA

gini = 0.0
samples = 1

value = [0, 1, 0]
class = severe OSA

gini = 0.0
samples = 2

value = [2, 0, 0]
class = No OSA

Pcrit ≤ 1.798
gini = 0.444
samples = 3

value = [1, 0, 2]
class = Mild-moderately severe OSA

gini = 0.0
samples = 2

value = [0, 0, 2]
class = Mild-moderately severe OSA

gini = 0.0
samples = 1

value = [1, 0, 0]
class = No OSA
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Conversely, although the current analyses
approaches are not directly comparable with
previous independent analyses, the present
findings indicate that when all four OSA
endotypes are considered collectively using a
DTL approach, AHI-defined OSA severity
categories can be distinguished. This is further
supported by the multinomial logistic
regression analyses findings. Thus, OSA
endotypes appear to be important contributors
to AHI-defined OSA severity categories.

In addition, the information provided
in Figure 1 provides novel insight into the
various ways in which people can either be
protected from or have OSA depending
on their endotypic traits. For example,
consistent with the importance of upper-
airway anatomy/collapsibility as an essential
contributor to OSA pathogenesis (10, 11), at
step 1 of the decision tree, if someone has a
Pcrit ,z25 cm H2O, they are protected
from OSA (“no OSA” box on the upper
left side of the decision tree in Figure 1).
Conversely, if someone has a Pcrit .z12
cm H2O (severely collapsible airway), then
this is a direct pathway to severe OSA
(“severe OSA” box on the upper righthand
side of the decision tree in Figure 1).
However, as highlighted in Figure 1, if
someone has a Pcrit ,z12 cm H2O (mild
to moderately collapsible airway), whether
they have OSA (and if so, its severity) is
dependent on the extent to which one or
more of the other three nonanatomical traits
are impaired. Thus, this decision tree
approach provides unique insight into the
various potential mechanisms that can
contribute to OSA pathogenesis.

A Novel Simplified Approach to
Estimate OSA Endotypes from
Standard Clinical and PSG Variables
Recent advances in simplified measures for
respiratory endophenotyping of OSA allow
estimation of three of the four traits that
contribute to an individual’s OSA from a
standard diagnostic sleep study or a CPAP
titration (9). These include estimates of
pharyngeal collapsibility (27, 28), arousal
threshold (35, 36), and loop gain (34). These
surrogate measures have been derived

to translate complex respiratory
endophenotyping methodology, which
provides precise, detailed insight in a
reproducible manner for research purposes
(39, 55), to the clinical setting to allow tailored
therapy for OSA (10). Simplified methods to
estimate muscle responsiveness (the final trait)
have proved more challenging. However,
simply quantifying mean airflow during sleep
may provide some insight into the combined
contributions of upper-airway anatomy and
pharyngeal muscle compensation (27, 28). In
addition, a high REM AHI but low NREM
AHI is likely to be a marker of excellent
pharyngeal muscle effectiveness during
NREM sleep (48). Thus, although the current
study focused on gold-standard quantification
of the muscle responsiveness endotype,
investigation of muscle effectiveness or airflow
responses/upper-airway gain would be of
interest in future work.

Sands and colleagues have developed a
composite approach in which all four
endotypic traits are estimated by fitting a
gain, delay, and time-constant model to the
airflow signal from a standard PSG (26, 29,
36). This technique yields quite accurate
estimates of each trait compared with more
direct physiology assessments. A limitation
of this approach is that it makes certain
assumptions that may or may not be true in
everyone. For example, it assumes that
the airway is fully patent at the end of
respiratory events such that ventilation
matches ventilatory drive for several breaths
before the resumption of sleep. This may not
be true for everyone. Accordingly, this
technique continues to be refined and
optimized. Nonetheless, despite these
potential limitations, using this approach
in which information from all four OSA
endotypic traits are considered can provide
important insight into clinical responses to
non-CPAP therapies. Indeed, it has recently
been used to predict treatment response to
oral appliances and oxygen therapy (21, 26).
These findings further highlight the
importance of incorporating all four traits
into a prediction model to achieve predictive
accuracy that is clinically useful.

The current study findings raise the
possibility that a data-driven predictive
analysis approach could be incorporated as
part of a clinical decision support system to
inform targeted therapy for OSA. We
selected a total of eight standard PSG
variables and two clinical variables to
develop the predictive decision tree in the
current study, as these are readily available
and have, in isolation, been shown to be
related to one or more of the OSA endotypes
(40–51). Figure 2 highlights how each of
these variables can contribute to the
endotypic traits according to the stepwise
decision tree developed by the model,
which similar to Figure 1, provide novel
mechanistic and clinical insight. Although
the current approach yielded maximum
estimates that are potentially clinically
acceptable for Pcrit and arousal threshold,
there is clearly further scope to add input
from additional variables in future
investigations to further optimize
performance and predictive capacity.
Similarly, like other recent attempts to
estimate nonanatomical traits, accurate
prediction for traits such as muscle
responsiveness was suboptimal. Indeed,
although these initial findings represent the
first crucial analytical development step and
provide novel mechanistic insight for the
current cohort, further development and
replication in other OSA endotype cohorts
to determine whether the specific
decision tree criteria derived here are
generalizable to other cohorts is clearly
required.

Methodological Considerations
Despite its novelty and strengths, this
study has several limitations that need
to be considered. First, the number of
samples was quite low for a supervised
model. However, the quality of the OSA
endophenotypic data, which were collected
using advanced physiological methodology,
was very high. Thus, it was possible to
achieve quite high maximal accuracy rates
for OSA severity categories, Pcrit, and
arousal threshold with a relatively small

Figure 1. (Continued). Decision tree for total apnea–hypopnea index (AHI) prediction using the four obstructive sleep apnea endotypes. This figure shows the
internal workings of the algorithm. Gini impurity is ameasure of howoften a randomly chosen element from the set would be incorrectly labeled if it was randomly
labeled according to the distribution of labels in the subset. It reaches itsminimum (0) when all cases in the node fall into a single target category. At that stage, the
“root nodes” converge into a “leaf node,” demarking the end of a decision branch, or a root node itself becomes a leaf node with gini =0. Left indicates that the
criterion is met (true), whereas right indicates that the criterion is not met (false). Refer to the text and DISCUSSION explanation for further detail. Mild to moderately
severe obstructive sleep apnea (OSA)=apnea–hypopnea index (AHI) between 10 and 30 events/h sleep; no OSA=AHI , 10 events/h sleep; and severe
OSA=AHI . 30 events/h sleep. gini =gini impurity; Pcrit = upper-airway collapsibility; SaO2

=arterial oxygen saturation.
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sample. Although the acquisition of larger
detailed OSA endophenotyping datasets in
which to compare/validate against the
current findings would be desirable,
this is impractical given the high
level of complexity to acquire detailed
endophenotypic data, including Pcrit and
muscle responsiveness, using intramuscular
electromyographic techniques. An alternate

strategy would be to refine the tools
described in the current study and apply to
large OSA treatment datasets to assess
predictive accuracy. Indeed, prediction
accuracy could be further improved over
time with more research on the suitability of
various analysis models. This is a priority for
future work but is beyond the scope of the
current investigation.

There are several common definitions
of hypopneas. Different definitions have
the potential to alter AHI cutoffs (56)
and polysomnography predictors of
endotypic traits such as arousal threshold
(57). Thus, as different hypopnea
definitions have the potential to alter
performance characteristics of the current
algorithm that have been developed

NREM AHI ��9.85
gini = 0.612

samples = 52
value = [19, 25, 8]

class = MODERATE

gini = 0.0
samples = 12

value = [12, 0, 0]
class = GOOD

True

Arousal Index ��58.85
gini = 0.539

samples = 40
value = [7, 25, 8]

class = MODERATE

False

Arousal Index ��14.1
gini = 0.439

samples = 32
value = [6, 23, 3]

class = MODERATE

Supine AHI ��64.6
gini = 0.531
samples = 8

value = [1, 2, 5]
class = BAD

gini = 0.0
samples = 2

value = [2, 0, 0]
class = GOOD

BMI ��25.903
gini = 0.384

samples = 30
value = [4, 23, 3]

class = MODERATE

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

Total AHI ��41.7
gini = 0.35

samples = 29
value = [3, 23, 3]

class = MODERATE

Total AHI ��32.4
gini = 0.465

samples = 20
value = [3, 14, 3]

class = MODERATE

gini = 0.0
samples = 9

value = [0, 9, 0]
class = MODERATE

Supine NREM AHI ��33.0
gini = 0.231

samples = 15
value = [2, 13, 0]

class = MODERATE

Supine AHI ��47.25
gini = 0.56

samples = 5
value = [1, 1, 3]

class = BAD

REM AHI ��46.5
gini = 0.133

samples = 14
value = [1, 13, 0]

class = MODERATE

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

gini = 0.0
samples = 13

value = [0, 13, 0]
class = MODERATE

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

age ��55.0
gini = 0.375
samples = 4

value = [0, 1, 3]
class = BAD

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

gini = 0.0
samples = 3

value = [0, 0, 3]
class = BAD

gini = 0.0
samples = 1

value = [0, 1, 0]
class = MODERATE

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

NREM AHI � 106.8
gini = 0.408
samples = 7

value = [0, 2, 5]
class = BAD

Fraction of hypopneas ��98.501
gini = 0.278
samples = 6

value = [0, 1, 5]
class = BAD

gini = 0.0
samples = 1

value = [0, 1, 0]
class = MODERATE

gini = 0.0
samples = 5

value = [0, 0, 5]
class = BAD

gini = 0.0
samples = 1

value = [0, 1, 0]
class = MODERATE

A

Figure 2. Decision tree predictions for the four obstructive sleep apnea endotypes using standard polysomnographic variables plus clinical data. (A)
Upper-airway collapsibility. (B) Arousal threshold. (C) Muscle responsiveness. (D) Loop gain. AHI = apnea–hypopnea index; BMI =body mass index;
gini = gini impurity; NREM=non–rapid eye movement; Pcrit = upper-airway collapsibility; REM= rapid eye movement; SaO2

= arterial oxygen saturation (see
Table 1 for Good, Moderate, and Bad class definitions).
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according to the selected clinical and
physiological cutoffs, it will be important
to develop and optimize future versions for
different hypopnea/scoring criteria and
different cutoffs as required. There is also
considerable night-to-night variability in
OSA severity as measured by the AHI and
polysomnography parameters (58, 59).
Thus, multiple night testing, potentially

including home testing, to derive an
average may help to reduce this source
of variability and improve predictive
accuracy performance. Study participants
were CPAP compliant. OSA severity does
not immediately to return to baseline levels
after one night of CPAP withdrawal as
employed in the current design (60–63).
Thus, although of one night of withdrawal

was appropriate to reduce the impact of
potential confounders such as edema and
sleep deprivation between study nights, it
will be important to include the clinically
relevant target group of untreated patients
in future treatment prediction studies
that use these analysis tools to enhance
generalizability. Control subjects were also
not matched to participants with OSA in

Supine NREM AHI ��15.05
gini = 0.663

samples = 52
value = [19, 15, 18]

class = GOOD

age ��46.5
gini = 0.494

samples = 18
value = [4, 2, 12]

class = BAD

True

Arousal Index ��27.0
gini = 0.628

samples = 34
value = [15, 13, 6]

class = GOOD

False

Arousal Index ��9.0
gini = 0.153

samples = 12
value = [1, 0, 11]

class = BAD

Fraction of hypopneas ��96.919
gini = 0.611
samples = 6

value = [3, 2, 1]
class = GOOD

Nadir SaO2 ��90.5
gini = 0.444
samples = 3

value = [1, 0, 2]
class = BAD

gini = 0.0
samples = 9

value = [0, 0, 9]
class = BAD

gini = 0.0
samples = 2

value = [0, 0, 2]
class = BAD

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

gini = 0.0
samples = 3

value = [3, 0, 0]
class = GOOD

Total AHI ��16.55
gini = 0.444
samples = 3

value = [0, 2, 1]
class = MODERATE

gini = 0.0
samples = 2

value = [0, 2, 0]
class = MODERATE

gini = 0.0
samples = 1

value = [0, 0, 1]
class = BAD

BMI ��36.104
gini = 0.245
samples = 7

value = [0, 6, 1]
class = MODERATE

REM AHI ��6.0
gini = 0.59

samples = 27
value = [15, 7, 5]
class = GOOD

gini = 0.0
samples = 6

value = [0, 6, 0]
class = MODERATE

gini = 0.0
samples = 1

value = [0, 0, 1]
class = BAD

Fraction of hypopneas ��96.743
gini = 0.444
samples = 3

value = [0, 2, 1]
class = MODERATE

age ��55.5
gini = 0.538

samples = 24
value = [15, 5, 4]
class = GOOD

gini = 0.0
samples = 1

value = [0, 0, 1]
class = BAD

gini = 0.0
samples = 2

value = [0, 2, 0]
class = MODERATE

Fraction of hypopneas ��84.464
gini = 0.623

samples = 18
value = [9, 5, 4]
class = GOOD

gini = 0.0
samples = 6

value = [6, 0, 0]
class = GOOD

REM AHI ��66.5
gini = 0.375
samples = 4

value = [1, 3, 0]
class = MODERATE

Arousal Index ��38.3
gini = 0.571

samples = 14
value = [8, 2, 4]
class = GOOD

gini = 0.0
samples = 3

value = [0, 3, 0]
class = MODERATE

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

Nadir SaO2 ��87.0
gini = 0.444
samples = 6

value = [4 ,2 ,0]
class = GOOD

Nadir SaO2 ��78.0
gini = 0.5

samples = 8
value = [4, 0, 4]
class = GOOD

Arousal Index ��32.7
gini = 0.444
samples = 3

value = [1, 2, 0]
class = MODERATE

gini = 0.0
samples = 3

value = [3, 0, 0]
class = GOOD

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

gini = 0.0
samples = 2

value = [0, 2, 0]
class = MODERATE

gini = 0.0
samples = 3

value = [3, 0, 0]
class = GOOD

REM AHI ��63.8
gini = 0.32

samples = 5
value = [1, 0, 4]

class = BAD

gini = 0.0
samples = 3

value = [0, 0, 3]
class = BAD

age ��45.5
gini = 0.5

samples = 2
value = [1, 0, 1]
class = GOOD

gini = 0.0
samples = 1

value = [0, 0, 1]
class = BAD

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

B

Figure 2. (Continued).
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Nadir SaO2 ��72.5
gini = 0.663

samples = 52
value = [16, 20, 16]
class = MODERATE

gini = 0.0
samples = 5

value = [5, 0, 0]
class = GOOD

True

Fraction of hypopneas ��62.414
gini = 0.648

samples = 47
value = [11, 20, 16]
class = MODERATE

False

Nadir SaO2 ��82.5
gini = 0.32

samples = 5
value = [4, 1, 0]
class = GOOD

REM AHI ��39.4
gini = 0.622

samples = 42
value = [7, 19, 16]

class = MODERATE

gini = 0.0
samples = 4

value = [4, 0, 0]
class = GOOD

gini = 0.0
samples = 1

value = [0, 1, 0]
class = MODERATE

REM AHI ��9.2
gini = 0.593

samples = 27
value = [6, 15, 6]

class = MODERATE

BMI ��35.442
gini = 0.48

samples = 15
value = [1, 4, 10]

class = BAD

REM AHI ��7.3
gini = 0.568
samples = 9

value = [1, 3, 5]
class = BAD

Arousal Index ��15.3
gini = 0.475

samples = 18
value = [5, 12, 1]

class = MODERATE

REM AHI ��2.45
gini = 0.611
samples = 6

value = [1, 3, 2]
class = MODERATE

gini = 0.0
samples = 3

value = [0, 0, 3]
class = BAD

gini = 0.0
samples = 2

value = [0, 0, 2]
class = BAD

Nadir SaO2 ��92.0
gini = 0.375
samples = 4

value = [1, 3, 0]
class = MODERATE

gini = 0.0
samples = 3

value = [0, 3, 0]
class = MODERATE

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

Nadir SaO2 ��90.0
gini = 0.375
samples = 4

value = [3, 1, 0]
class = GOOD

Supine AHI ��48.2
gini = 0.357

samples = 14
value = [2, 11, 1]

class = MODERATE

gini = 0.0
samples = 3

value = [3, 0, 0]
class = GOOD

gini = 0.0
samples = 1

value = [0, 1, 0]
class = MODERATE

Nadir SaO2 ��93.0
gini = 0.26

samples = 13
value = [2, 11, 0]

class = MODERATE

gini = 0.0
samples = 1

value = [0, 0, 1]
class = BAD

Nadir SaO2 ��79.0
gini = 0.153

samples = 12
value = [1, 11, 0]

class = MODERATE

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

Total AHI ��22.45
gini = 0.5

samples = 2
value = [1, 1, 0]
class = GOOD

gini = 0.0
samples = 10

value = [0, 10, 0]
class = MODERATE

gini = 0.0
samples = 1

value = [0, 1, 0]
class = MODERATE

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

age ��58.0
gini = 0.198
samples = 9

value = [1, 0, 8]
class = BAD

Arousal Index ��32.05
gini = 0.444
samples = 6

value = [0, 4, 2]
class = MODERATE

gini = 0.0
samples = 8

value = [0, 0, 8]
class = BAD

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

gini = 0.0
samples = 1

value = [0, 0, 1]
class = BAD

Supine NREM AHI ��89.8
gini = 0.32

samples = 5
value = [0, 4, 1]

class = MODERATE

gini = 0.0
samples = 4

value = [0, 4, 0]
class = MODERATE

gini = 0.0
samples = 1

value = [0, 0, 1]
class = BAD

C

Figure 2. (Continued).

ORIGINAL RESEARCH

664 AnnalsATS Volume 18 Number 4| April 2021
 



terms of clinical characteristics such as age
and BMI. Thus, given that people without
OSA who are overweight or have obesity
tend to have differences in their endotypic
traits, such as enhanced pharyngeal muscle
responsiveness during sleep (64), the
inclusion of control subjects with clinical
characteristics closer to those of the patient
population with OSA will be insightful
for future investigations into the role
of endotypic traits on OSA severity.

Conclusions
This study demonstrates that OSA
endotypes are important contributors to
PSG-defined OSA severity categories.
The four traits can interact in multiple
ways to either cause or prevent OSA.
In addition, this initial work highlights
the potential to use standard clinical
and polysomnographic variables to
estimate at least two of the four key OSA
endotypes. These novel approaches may be

useful to advance OSA pathophysiology and
have the potential to be used to help identify
and tailor targeted therapies for people with
OSA. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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age ��47.5
gini = 0.65

samples = 52
value = [21, 12, 19]

class = GOOD

Fraction of hypopneas ��99.657
gini = 0.624

samples = 30
value = [8, 7, 15]

class = BAD

True

age ��51.5
gini = 0.566

samples = 22
value = [13, 5, 4]
class = GOOD

False

BMI ��45.888
gini = 0.552

samples = 23
value = [8, 2, 13]

class = BAD

age ��45.5
gini = 0.408
samples = 7

value = [0, 5, 2]
class = MODERATE

Total AHI ��36.55
gini = 0.526

samples = 21
value = [6, 2, 13]

class = BAD

gini = 0.0
samples = 2

value = [2, 0, 0]
class = GOOD

age ��44.5
gini = 0.497

samples = 13
value = [6, 0, 7]

class = BAD

Supine NREM AHI ��48.0
gini = 0.375
samples = 8

value = [0, 2, 6]
class = BAD

gini = 0.0
samples = 3

value = [0, 0, 3]
class = BAD

REM AHI ��6.55
gini = 0.375
samples = 8

value = [6, 0, 2]
class = GOOD

gini = 0.0
samples = 2

value = [0, 0, 2]
class = BAD

Arousal Index ��8.0
gini = 0.444
samples = 3

value = [1, 0, 2]
class = BAD

gini = 0.0
samples = 5

value = [5, 0, 0]
class = GOOD

gini = 0.0
samples = 1

value = [1, 0, 0]
class = GOOD

gini = 0.0
samples = 2

value = [0, 0, 2]
class = BAD

gini = 0.0
samples = 1

value = [0, 1, 0]
class = MODERATE

REM AHI ��81.65
gini = 0.245
samples = 7

value = [0, 1, 6]
class = BAD

gini = 0.0
samples = 6

value = [0, 0, 6]
class = BAD

gini = 0.0
samples = 1

value = [0, 1, 0]
class = MODERATE

gini = 0.0
samples = 4

value = [0, 4, 0]
class = MODERATE

Total AHI ��29.05
gini = 0.444
samples = 3

value = [0, 1, 2]
class = BAD

gini = 0.0
samples = 2

value = [0, 0, 2]
class = BAD

gini = 0.0
samples = 1

value = [0, 1, 0]
class = MODERATE

gini = 0.0
samples = 6

value = [6, 0, 0]
class = GOOD

Nadir SaO2 ��87.0
gini = 0.648

samples = 16
value = [7, 5, 4]
class = GOOD

Fraction of hypopneas ��96.743
gini = 0.602

samples = 14
value = [7, 5, 2]
class = GOOD

gini = 0.0
samples = 2

value = [0, 0, 2]
class = BAD

Supine NREM AHI ��6.0
gini = 0.569

samples = 12
value = [7, 3, 2]
class = GOOD

gini = 0.0
samples = 2

value = [0, 2, 0]
class = MODERATE

gini = 0.0
samples = 1

value = [0, 0, 1]
class = BAD

Arousal Index ��109.7
gini = 0.512

samples = 11
value = [7, 3, 1]
class = GOOD

Total AHI ��48.55
gini = 0.42

samples = 10
value = [7, 3, 0]
class = GOOD

gini = 0.0
samples = 1

value = [0, 0, 1]
class = BAD

Total AHI ��30.15
gini = 0.5

samples = 6
value = [3, 3, 0]
class = GOOD

gini = 0.0
samples = 4

value = [4, 0, 0]
class = GOOD

gini = 0.0
samples = 3

value = [3, 0, 0]
class = GOOD

gini = 0.0
samples = 3

value = [0, 3, 0]
class = MODERATE

REM AHI ��73.0
gini = 0.48

samples = 10
value = [6, 0, 4]
class = GOOD

D

Figure 2. (Continued).
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