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Unplanned fire is a major control on the nature of terrestrial ecosystems and causes substantial losses of life
and property. Given the substantial influence of climatic conditions on fire incidence, climate change is
expected to substantially change fire regimes in many parts of the world. We wished to determine whether it
was possible to develop a deep neural network process for accurately estimating continental fire incidence
from publicly available climate data. We show that deep recurrent Elman neural network was the best
performed out of ten artificial neural networks (ANN) based cognitive imaging systems for determining the
relationship between fire incidence and climate. In a decennium data experiment using this ANN we show
that it is possible to develop highly accurate estimations of fire incidence from monthly climatic data
surfaces. Our estimations for the continent of Australia had over 90% global accuracy and a very low level of
false negatives. The technique is thus appropriate for use in estimating the spatial consequences of climate
scenarios on the monthly incidence of wildfire at the landscape scale.

O
n every continent, except Antarctica, there are substantial areas in which wildfire is a frequent event1–13.
We have used Australia as a case study because the proportionate incidence, area and socioeconomic
effects of wildfires are higher in Australia than in any other continental land mass14. Scenarios for climate

change suggest that much of Australia will have climates more conducive to the incidence of wildfire than at
present10,15, a tendency already apparent from 1945 onwards16. Climatic variables have been long used to deter-
mine the potential for fire spread from ignition17. Lightning, a product of particular weather systems, is a major
source of ignition over most of the continent18–20. While it is not possible for fire to burn without dry fuel, severe
fire weather conditions can facilitate spread over substantial fuel-free areas, such as water bodies, as burning
material is carried in strong wind21. Fire can persist in areas with heavy dry fuel until conditions allow it to spread
over low fuel zones. Thus, the relationship of fire incidence to climatic conditions is not confined to the weather
that allows spread from ignition, but also weather that allows fire to persist in such places as stumps and tree
hollows between weather events that allow it to run. The moistness of fuel strongly controls its flammability, this
moistness being an integral of past precipitation and evaporation mediated by soil field capacity22. Therefore, in
estimating the potential for fire incidence from climatic variables, longer time frames than the minute, hour or day
are appropriate23.

Our major aim in undertaking the work reported in the present paper was to develop an accurate system for
estimating monthly wildfire incidence from readily available monthly average climatic conditions, in order to be
able to refine our understanding of the implications of climate change for fire regimes. We chose to use cognitive
imaging systems (Figure S1) to attempt to make this estimation, because these deep24 machine learning processes
have proven to be highly effective in a wide range of applications while being free of the restrictive assumptions of
other predictive systems25. Because there are many possible types of ANN, we trialled ten systems, with the
facilitative aim to determine the most appropriate of these for our main purpose and to justify the effectiveness of
proposed deep learning mechanism for the cognitive imaging system.

We obtained monthly data for evapotranspiration, sensible heat flux, solar irradiation, maximum temperature,
soil moisture, wind speed, relative humidity and vapour pressure for the decade 2001–2010. There is a high degree
of covariance among some of these variables, with the first three principal components derived from our data
accounting for 95% of the variance, but this does not affect the outcomes from neural network analysis. We found
that soil moisture, solar irradiation, and wind speed were the most significant contributors to the data variance.
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We used the months of November-February for our analyses because
very few planned burns take place in Australia in late spring and
summer, which is also the peak time for lightning strikes20, giving
us confidence that we are largely addressing climatic influence on
wildfire.

Results
Elman neural networks11 (Figure S2) produced the best level of
explanation (Table 1). The Elman neural network is a simple recur-
rent neural network which was used for the deep24 learning experi-
mentations. It consists of an input layer, a hidden layer, and an
output layer, resembling a three layer feed forward neural network.
However, it also has a context layer. This context layer is fed with the
unweighted output from the hidden layer. The Elman network then
remembers these values and outputs them on the next run of the
neural network. These values are then sent, using a trainable
weighted connection, back into the hidden layer. Elman neural net-
works are very useful for estimating sequences, since they have
a limited short-term memory. The high estimation accuracies
achieved from the Elman neural network relate to its deep24 learning
architecture (including unsupervised feature extraction layer and
supervised training based modelling layer), which provides state-
space representation for dynamic systems and a recurrent neural
equalizer.

Fire incidence was concentrated in northern Australia, although
its centre of gravity typically shifted south between November and
February (Figure 1). The predicted patterns were closely similar to
the observed patterns (Table 2). The mean and standard error of the
mean for estimation accuracy for the twelve test months were 92.19
(0.39), for sensitivity 95.09 (0.56), for specificity 94.31 (0.68), for false
negatives 2.06 (0.43) and for true negatives 95.16 (0.60).

Discussion
The Elman ANN has been previously recommended for a related
purpose26. Its limited short term memory may be the key to its
success in estimating spatial patterns of fire incidence, as the inci-
dences themselves feed back to the probability of new incidences.

These spatial patterns were captured as physical features from the
environmental gridded images. Its high degree of success in estim-
ating fire incidence compared with previous attempts at estimation
of fire over more restricted areas10,23,27, may be as much related to the
input time and space scales as to method, as the stochastic compon-
ent in fire incidence is logically likely to decrease with larger time
slices and larger pixels. The shadow of false negatives from predicted
incidences (Figure 1, Figure 2, Figure 3, Figure 4, Figure S3, Figure S4
and Figure S5) indicates that a small stochastic component lingers
even at our coarse temporal and spatial scales. Not all areas that could
potentially be burned do get burnt, because of the dynamics of the
interaction of diurnal and nocturnal weather cycles and the spatial
patterning of dry fuel, and areas that have been recently burned do
not carry fire.

Fuel is a major influence on fire incidence and spread. For
example, fires in the Australian desert tend to be most extensive in
wet years when fuel builds up to a sufficient amount and continuity
to carry fire20. However, it appears that the importance of fuel levels
in fire incidence at our spatiotemporal scale is subsumed within our
climatic variables, or that spatial heterogeneity in fuel occurs at a
finer scale than that of our analysis.

Because ignition of fire by human beings well outweighs ignition
of fires by lightning20, the major natural cause, the predominance of
climate in estimation is surprising on the surface. However, the
accurate estimation of monthly fire incidence from monthly climatic
data does not necessarily mean that human beings have little or no
influence on fire incidence in Australia in the months of November-
February. In temperate Australia, there is active discouragement of
ignition, and attempts at suppression after fires are lit, during
weather that could result in uncontrollable wildfire. There is less
government interference in fire incidence in the tropics and the
desert country20. Prevention and suppression in temperate Aus-
tralia may be having a spatially uniform effect on fire incidence,
allowing climate to appear the sole influence. However, for the pur-
pose of estimation of the response of wildfires to climate change, it
may be safely assumed that the people of temperate Australia will not
relax their vigilance in relation to summer fire, allowing our model to

Table 1 | Comparison of results for ten neural network systems

Different Neural Networks
Average

Accuracy (%)
Average

Sensitivity (%)
Average

Specificity (%)
False

Negative (%) True Negative (%)

Feed Forward Back Propagation 73.67 67.61 69.14 9.66 81.24
Cascade 71.65 77.81 69.88 21.07 72.63
Multi-Layer Perception 85.61 80.44 79.13 10.15 86.05
Time Delay 88.21 87.41 89.54 7.62 83.78
Recurrent 92.77 82.22 80.91 1.96 86.43
Radial Basis Function 91.25 87.89 89.75 1.83 90.55
Elman 94.72 95.31 93.94 1.76 96.98
Probabilistic 90.35 89.57 89.04 4.27 85.09
Regression 65.27 70.79 69.52 25.86 78.15
Learning Vector Quantization 75.95 67.21 79.33 5.44 88.02

Figure 1 | The NASA fire incidence data, the estimations from the Elman neural network and false negatives from the estimation for November 2008.
Maps were generated using MATLAB Software image processing and neural network toolbox. E CSIRO, Australia.
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be used irrespective of the degree of anthropogenic influence, as long
as that influence remains uniform within climatic regions.

Methods
An ANN requires an input and a known target for training the system. The training
phase modulates the internal layers of the system based on the training inputs. Once
the ANN system is trained, it is ready for testing. In the testing phase an ANN
produces an output based on all combination of inputs. The Feed Forward Back
Propagation, Cascade, Multi-Layer Perception, Time Delay, Recurrent, Radial Basis
Function, Elman, Probabilistic, Regression and Learning Vector Quantization net-
works were applied to the same data sets to establish the best architecture as indicated
by estimation accuracy ((TP 1 TN)/(TP 1 FN 1 FP 1 TN) where true positives 5

TP, true negatives 5 TN, false positives 5 FP, false negatives 5 FN). This was done to
establish a comparative generalization capability of the proposed deep24 cognitive
imaging system.

The selected Elman network for our deep24 learning mechanism uses a system of
ordinary differential equations to model the effects on a neuron of the incoming spike
train11.

For a neuron i in the network with action potential yi the rate of change of
activation is given by:

ti _y1~{yizs
Xn

j~1

wjiyj{hj

 !
zIi tð Þ

Where:

ti: Time constant of postsynaptic node, yi: Activation of postsynaptic node, _y1: Rate
of change of activation of postsynaptic node, wij: Weight of connection from pre to
postsynaptic node, s(x): Sigmoid of x e.g. s(x) 5 1/(1 1 e2x), yj: Activation of
presynaptic node, hj: Bias of presynaptic node, Ii(t): Input (if any) to node.

The continuous recurrent neural network is a dynamic systems model of biological
neural networks which has been widely used in deep learning mechanism24,26,11. The
Elman artificial neural network has typically sigmoid artificial neurons in its hidden
layer, and linear artificial neurons in its output layer. In the present study, the
MATLAB based design of the Elman network has three primary attributes, namely,
‘‘layerdelays’’ (row vector of increasing 0 or positive delays), ‘‘hiddenSizes’’ (row
vector of one or more hidden layer sizes), and ‘‘trainFcn’’ (training function). The best
performing Elman network’s ‘‘layerdelays’’ was 1512, ‘‘hiddenSizes’’ was 135 and
‘‘trainFcn’’ was ‘trainlm’.

We used a gridded matrix of 670 rows and 813 columns for all input data sources.
Six data segmentation regions were used for training and testing the network (Figure
S1). The segments S1, S2, S4 and S5 have 335 rows and 300 columns. The segments S3
and S6 have 335 rows and 213 columns. The map-based image data (training inputs,
testing inputs and training targets) were segmented into six smaller regions to
maximize the learning speed while training and optimize the computational memory
usage. Six dedicated Elman networks for each of these segments (S1–S6) were trained
and tested individually. Final estimation results were constructed by combining the
six segmented estimation outputs produced by the six individual networks. We
calculated the following values for each of the months: estimation accuracy; sens-
itivity (TP / (TP 1 FN)); specificity (TN / (FP 1 TN)); where true positives 5 TP, true
negatives 5 TN, false positives 5 FP, false negatives 5 FN.

The main motivation of the present study was to use publicly available climate data
sources to establish an effective estimation of continental scale wildfire incidences.

Table 2 | Percentage estimation results and confusion matrix error statistics achieved from the decennium data experiment using the Elman
neural network

Time Period Estimation Accuracy (%) Sensitivity (%) Specificity (%) False Negative (%) True Negative (%)

Testing 1 {Nov-07} 93.62 97.94 95.22 0.95 96.81
Testing 1 {Dec-07} 91.34 94.5 97.2 1.07 97.8
Testing 1 {Jan-08} 90.78 92.98 93.57 2.32 92.88
Testing 1 {Feb-08} 91.07 95.1 90.87 3.67 95.34
Testing 2 {Nov-08} 94.72 97.32 98.67 0.35 98.56
Testing 2 {Dec-08} 93.45 97.15 95.66 0.78 96.72
Testing 2 {Jan-09} 91.48 95.08 94.17 1.12 94.81
Testing 2 {Feb-09} 92.77 97.1 94.87 1.01 96.14
Testing 3 {Nov-09} 92.59 93.52 94.87 2.55 94.6
Testing 3 {Dec-09} 92.89 95.15 92.06 1.75 92.72
Testing 3 {Jan-10} 90.28 92.11 93.91 4.16 92.44
Testing 3 {Feb-10} 91.33 93.16 90.67 5.01 93.14

Figure 2 | The NASA fire incidence data, the estimations from the Elman neural network and false negatives from the estimation for the December
2008. Maps were generated using MATLAB Software image processing and neural network toolbox. E CSIRO, Australia.

Figure 3 | The NASA fire incidence data, the estimations from the Elman neural network and false negatives from the estimation for the January 2009.
Maps were generated using MATLAB Software image processing and neural network toolbox. E CSIRO, Australia.
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For the months of November, December, January and February we used the monthly
average maps of total evaporation, sensible heat flux, precipitation, incoming solar
irradiance, maximum temperature and soil moisture from the Australian Water
Availability Project (AWAP28) data base and the monthly average maps of wind
speed, vapour pressure and relative humidity from the Australian Bureau of
Meteorology (BOM29). Our response variable was based on the data in the monthly
Australian bushfire maps from NASA Active (NASAA) fire data (based on satellite
images from EOSDIS30). In order to reduce the uncertainties associated with EOSDIS
images, latitude-longitude combinations were averaged on 5-km gridded area to
calculate representative wildfire locations. Image filtering techniques based on
Australian vegetation mask and recorded land usage map were applied to remove the
fire locations which were not in native vegetation. Principal components analysis
based on singular value decomposition was used to provide least correlated input
loadings hence maximum data variance.

Various training and testing data sets were formed from the integrated 10 year long
data set comprising data for November, December, January and February, 2001–
2010. The Elman method was used to establish the training-testing paradigm which
maximized the generalization capability of the neural network architecture.
Combinations of % training data and % testing data were varied from {10%–90%} to
{50%–50%} to identify the best possible training-testing data balance to achieve
maximum estimation accuracy with highest possible sensitivity and specificity.
Elman neural network architecture was able to achieve maximum estimation accu-
racy when 70% of the data were used for training and 30% of the data were used for
testing. We therefore used 2001–2007 for training and 2008–2010 for testing. Three
training sets were made truly independent from the testing sets as this method
provided us with high confidence in the experimental design.
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Figure 4 | The NASA fire incidence data, the estimations from the Elman neural network and false negatives from the estimation for the February
2009. Maps were generated using MATLAB Software image processing and neural network toolbox. E CSIRO, Australia.
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